PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Two-dimensional turbulence and dispersion in a freely decaying system
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We report experimental results obtained on freely decaying two-dimensional turbulence. The flow is pro-
duced in a thin stratified layer of electrolyte, using an electromagnetic forcing. The velocity and vorticity fields
are measured using a particle image velocimetry technique. The study of the temporal evolution of the system
confirms in detail the scaling theory of Carnevaleal. [Phys. Rev. Lett66, 2735(199]1)]; the experimental
value we find for the exponent characterizing the decay of the vortex density @6s7+0.1. We further
measure the collision time, the mean free path, and the mean square displacemefltof the vortices. We
find the following laws:7~t%%, A\ ~t%45 ando?~t'3. The statistics of passive particlggbeit virtua) in the
system is also studied. They move hyperdiffusively, with an exponent similar to that obtained for the vortex
motion. The dispersion of the particles is controlled bwy.dlights, produced by the jets formed by the
dipoles. The distribution of flight times is t; %®. Further analysis of the data indicates that the vortices
undergo collisions whose geometrical aspects are analogous to those of an ordinary gas, and their motion is
essentially Brownian diffusion in an expanding geometry. We finally underline the close relationship between
the decay of turbulence and the dispersion phenon{&i263-651X98)07410-9

PACS numbes): 47.32.Cc, 47.27.Qb

I. INTRODUCTION t) €2
r~£(—T) . u~+E,
Two-dimensional(2D) turbulence has been considerably
studied in recent years, because of its applications in astro- t\ €2 t) €2
physics and geophysics, its relative accessibility to numerical Z~7’2(§, , Ku~(§, ,

computation, and as a fascinating field in its own right. The
f_ormation of coher_ent structures or vortices has been estz_il?ﬁ which the length scal& and time scal@ are defined by
lished both numerically and experimentally as a characteris-

tic feature of 2D turbulent flows. In freely decaying turbu- /;:w;X%\/E, T= ng}_ 2
lence, which is the issue we address here from an

experimental point of view, the vortices tend to live long The exponent is not determined by the theory. Numerical
compared to their turnover time. From the time at which thestudies, both of the full Navier-Stokes equations and of
coherent structures are formed, and until the final dipole statpoint-vortex models, have consistently given valués

has been reached, the governing dynamical processes are th@®.71-0.793,4]. On the experimental side, early investiga-
mutual advection of vortices, and the inelastic merging oftions of the decay regimgs,6] confirmed that, as time in-
like-sign vortices. In this time regime, assuming a self-creases, the vortex population becomes depleted and the
similar evolution of the vortex system, and taking the energymean vortex size increases. However, an accurate quantita-
per areaE as the only invariant, one would find on dimen- tive analysis of the phenomenon was not successfully
sional groundq1] that the density of vorticep decreases achieved. Recently, two authors of the present paper made
like p~E~'t~2. Numerical simulations, however, show a detailed measurements of the decay regime of quasi-two-
vortex number decay with a much slower rd®-4]. To  dimensional flows[7]. However, in the system they ex-
account for this observation, Carnevaleal. [3] proposed plored, three-dimensional perturbations were suggested to
the extremum vorticity of the core of the vortices,,, asa play an important role. All this means that, at the moment,
second invariant. Assuming further that the vorticity is con-our knowledge of the phenomenon essentially relies on nu-
centrated in vortices, they obtained the following scalingmerical studies.

laws for the density of vorticep, the vortex radius, the Theoretically, several attempts have been made to deter-
mean separation between vorticgeshe velocityu of a vor-  mine & [8-11]. Based on the scaling lawd), one of the

tex, the total enstroph¥, and the kurtosis Ku of the vortic- authors of Ref[4] proposed a derivation that yields=1,

ity distribution: but argued for lowering correctiori8]. On the other hand,
¢ ” on the background of a theoretical approach using a proba-
~£2<% ~£(£) (1) bilistic method to describe the motion of vortices in an ex-
P ' 7 ternal strain-rotation field, it has been suggested that the

value of ¢ depends on initial conditiong9]. In a related
context, the 2D ballistic agglomeration of hard spheres with
*Permanent address: CATS, the Niels Bohr Institute, Blegdamsa Size-mass relation mimicking the energy conservation rule
vej 17, 2100 Kbenhavn /Q DK. Electronic address: for vortices, the valug=0.8 is derived under mean-field
aehansen@nbi.dk assumptiong10]. Further, in another possibly related con-
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text, that of Ginzburg-Landau vortex turbulence, the value

¢é=2 has been proposdd 1]. Despite these attempts, it is @
fair to say that a convincing theoretical argument determin-
ing the decay parametéris still lacking.

Some of the theoretical attempts mentioned above bear on @

an analogy between the free decay of turbulence and the @ @

temporal evolution of populations of particles moving ran-
domly and undergoing nonelastic collisions. At the moment, @ @
such an analogy has not been tested against experiment, t0 =} /7
any extent. In particular, no measurements of the average ”/1‘@%&}};&2}”
time between two successive mergings and the correspond- AN AN AN 17
ing vortex path length$éwhich would represent the collision
time and the mean free path, respectiyelye available. The
experimental approach to this question is indeed to study the
displacement of the vortices, and since vorticity—to a certairthick. ~Permanent magnets of samarium cobalt,
extent—behaves as a passive scalar in 2D flows, this nat&x 8x3 mn? in size, are located just below the glass plate;
rally leads one to address the general problem of dispersiotmey are oriented so as to have a vertical magnetization axis.
of passive patrticles in freely decaying turbulence. This probEach magnet produces a magnetic field of approximately
lem will thus be investigated in our paper. On the problem 0f0.3 T.
dispersion in freely decaying turbulence, again no informa- The cell is filled with two layers of a solution of NaCl, of
tion is available at the present time. This situation contrastghickness 3 mm each. The layers have densitigs 1.14
with stationary two-dimensional forced systems, for which aand p,=1.29 g/cni, where the heavier fluid is on the bot-
few cases have been investigated in some detail. For raom. The density difference of the interface acts to prevent
domly forced turbulence it has been found numericfllg] ~ Vertical velocities, and thus bidimensionalizes the flow. It is
that the motion of passive particles is hyperdiffusive; the lawonly the use of stratification that distinguishes the experi-
of growth of the variance of the trajectorie€~t” seems, Mental procedure from the one used in R&f, but, as will
however, to be characterized by a nonuniform behavior. Prob® shown in Sec. Il B, this additional precaution has a pro-
vided the existence of power laws is assurigtich may be found importance for the evolytlon laws of th_e vortices. Th_e
guestionable in some caseit is found that the exponent two-layer structure also provides a mechanism for a rapid
jumps from 1.3 to 1.6 depending on whether the tracer visitdransfer of vorticity from the bottonwhere the magnets act
hyperbolic or elliptic regions. Other stationary systems,Most strongly to the freg surface. The vertical reorganization
dominated by coherent structures, have been studied expeff the flow has a maximum duration of 2's; thereafter the
mentally, and several exponents—all hyperdiffusive—haveSystem can be regarded as two dimensional. However, as
been reported_ For unclear reasons, most of them lie in thé”” be described in Sec. “ B, the bottom fr|Ct|0n still acts to
range 1.5 »<1.6. This holds for flows in a rotating annular 9ivé an overall exponential decay of the flow field. See Ref.
tank[13], flow in a vertically vibrated container for distances [18] for a thorough experimental investigation of these mat-
smaller than the wavelength of the surface wajie§, and  t€rs which strongly justlfle_s the_ b|d|rr_1en3|0n_allty of_the
drifters in the upper ocedii5]. setup, and Re[.19].for numerical simulations which provide
The present paper reports an experimental investigation gidditional supporting evidence.
vortex turbulence along with passive particle dispersion in a 1he flow boundaries in the horizontal plane are formed by
freely decaying 2D system. The paper is organized as folsolid rods of Iength 15 cm. The height of the r_ods equals t_he
lows. Turbulence is studied in Sec. Ill B, and compared todepth of the fluid, so as to prevent the formation of a menis-
theoretical expectations. In Sec. IV the collision time for CUS. An electric current is driven through the cell from one
vortices, the mean free path, and the mean square displac%de to the other, creating a force proportional to the current
ment of the vortices are studied. In Sec. V the statistics offensity which acts both horizontally and vertically on the
passive particles, obtained by a numerical integration of théluid. The horizontal component of the forcing is dynami-
experimentally determined velocity fields, is presented. weally active, while the vertical one is equilibrated by a pres-
shall in particular analyze the particle trajectories fomye Sure gradient. The structure of the initial flow is imposed by
flights [16], using a general approach which has been foundh€e arrangement of the magnets. The magnets are placed to
relevant in other systenfd3,14,17. We finally discuss the create a &8 array of vortices, with nearest neighbors
link between the dispersion and the decay problems, angounter-rotating. Typical values of the current range from

suggest a physical picture for the decay of two-dimensionaf00 MA to 1 A, the supply being controlled by a computer.
turbulence. The experimental procedure consists in imposing a constant

electrical current at timet= — 7, switching it off att=0,

and letting the system relax. The initial value of the Rey-
nolds number, calculated on the scale of the system, is typi-
A. Experiment cally Re=1800.

FIG. 1. The experimental setupketch.

Il. EXPERIMENTAL SETUP

The experimental arrangement, shown in Fig. 1, is similar
to the one used in previous studies by two of the present
authors(see Ref[7]). The flow is generated in a PVC cell, In a transient time period of maximum duration 2 s after
20x 27 cnt. The bottom of the cell is a glass plate 1 mm the forcing, the flow field reorganizes into a stationary verti-

B. Effect of bottom friction
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1 Lo ' During the decay process, an audio signal is generated on
E the sound channel of the video tape recorder, so as to iden-
tify each frame of the video signal. In a second step, the
video frames are digitized, ordered, and recorded on
magneto-optical disk. The method we use consists of dis-

(=]
E 0.1 = cretizing the flow surface on a grid. For each node, we com-
w ; 1 pute the correlation of the intensity field between two frames
C separated by a time intervat on a box of sizd . XI.. The
- position of the maximum of the correlation provides infor-
| mation about the mean displacements of the pattern of illu-

0.01 £
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minated particles. For the flow we consider, we use a
35 pixel/lcm spatial resolution, and AG0 measurement
points. To correct clearly erroneous velocity vectors, the lo-
cal divergencdor any “test” function of the derivativesof

FIG. 2. The evolution of the system energy per area. Straighfhe velocity field is computed and, if it exceeds some thresh-
line: e~014. old value, we replace the aberrant value by the local average
of the velocity. This occurs on average at three or four points

cal profile[18]. Thereafter, the only effect of tridimension- in @ny velocity field. _

ality is the friction on the bottom of the cell, causing the _ The calculations are performed on a microcomputer, as-

energy to decay exponentialli = E exp(—2at). In Fig. 2 S|steq by a double digital signal processor D|g|tal Signal Pro-

we plot the evolution of the energy for a typical experiment.C€SSing 32C. To compute the local derivative and the vortic-

The time constant @ agrees with the characteristic time for 1ty field, we determine a polynomial fit for each component

the relaxation of a Poiseuille profile 1d2=2b% 72y, where of the velocityv, andv, ; the derivatives are calculated from

b is the total thickness of the fluid layer andis the kine-  the fit. In practice, we use a polynomial of degree 2. Com-

matic viscosity. pared to spectral techniques, this method has the advgntage
The friction against the bottom can in the case of a staOf conserving all the moments, up to the degree of the fitting

tionary velocity profile be represented by a linear term in the?0lynomial. _ L _
2D Navier-Stokes equations, or in terms of the vorticity When the velocity and vorticity fields are determined, we

o(X,y) calculate the following three spatially averaged moments: the
e energy per are&, the enstrophyZ, and the kurtosis of the
o+ w,)=rvV?0—aw, (3)  vorticity distribution Ku, as
where w=—V?y, andJ(-,-) is the Jacobian. In order to 1 u?
counterbalance this term we apply the transformation E= PJ dX?,
o(W,y,t)—wo(x,y,t)e (4)
— 1 2
and rescale the time ag* =1—e~ “'. One then arrives at Z= L2 dx o, 6)
o+, %) =1* V20, (5) 11 .
Ku= ? FJ dx w”.
wherev* =e*'v. The flow is therefore equivalent to a two-

dimensional flow with a time dependent viscosity. In the
limit of high Reynolds numbers, it is legitimate to discard the
temporal variation of the viscosity and confront the experi-

mental results to pure two-dimensional systems using a co ;
P y g o define a vortex, we search for valups(x,y)| of the

stant viscosity. icity field d . local h th
All measurements of temporal properties will hereafter be?Orticity field around a unique, local extrenag,,, such that

expressed in terms of the transformed titife Note that ~“ext|@(X,Y)[>ws, wherews is a threshold. We use values

under the transformation the maximal observational time i the threshold such that the initial number of vortices is
t* =1/, correctly determined. In practice this gives a radig/ wey

~0.4 to 0.6. We have verified that this method is in accor-
dance with theWeiss criterion(see e.g., Refl20]) that as-
sociates the coherent structures to the areas of the flow with
The method of determination of the velocity field has alsoa negative determinai@ of the velocity gradients. Our pro-
been described in a previous papét; here we summarize cedure is an alternative to the rather constraining selection
its essential aspects. The flow is visualized using clusters aghethod of Ref[2].
neutrally buoyant particles, several tens of microns in size. An example of how this procedure works is shown in Fig.
Those particles are made visible by illuminating the fluid3. The characteristic vortex sizeis found from the mean
from above with an halogen lamp. The images of the flowarea occupied by the vortices. The mean distanbetween
are captured with a video camera and recorded on a videthe vortices is found by averaging over the distances between
tape. nearest neighbors.

Furthermore, we determine the evolution of the geometri-
cal properties characterizing the flow, namely, the number of
jorticesN, their mean radiua, and their mean separation

C. Determination of the velocity field and related quantities
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dx(t)

T = V(X,t). (7)
The derivativesy(x) are given by the experimentally deter-
mined velocity fields. As above, the velocity fields are found
with small, regular time intervals, to ensure that the veloci-
ties only change slightly. The 4040 velocity fields are in-
terpolated in space and time, and the trajectories are calcu-
lated using a standard fourth order Runge-Kutta method with
adaptive stepsizing.

We find that this is an effective method for extracting
statistical quantities from the flow fields. It allows us to av-
erage over a large number of trajectories, and thus to obtain
statistics that would be difficult to achieve experimentally.
The imaginary particles are indeed truly passive, so we do
not have to consider the question of Stokes drag or similar
experimental problems. On the other hand, since there is a
dure used to identify the vortices. The areas identified as vorticeé'm.'ted rr—_zsolutlon Of. the velocity f|elc{0.37_5 cm between
with the procedure described in the text, are colored uniformly.rkalghborlng vectos it is clear that the particles cannot cor-

Areas colored white correspond to positive vorticity, and areas col-rectIy sample m_otlons on a much quller scale. To this pomt
ored black to negative vorticity. we remark that in any case the quantity we are interested in,

namely, the mean square displacemehbf the particles, is
determined by the large scale properties of the fi@and

already after 1 s the typicalo>>0.7 cm). In the calcula-
rgions presented we use an ensemble of 3200 trajectories with
initial conditions uniformly distributed over the experimental
domain.

FIG. 3. An example of a vorticity field, illustrating the proce-

Finally, we study the dispersion of the vortices. The po-
sition of a vortex is defined by the position of the vorticity
extremum. We measure the following quantities: the mea
velocity u, the mean collision time, the mean free distance
A, .anq the mean sql_Jared .dlsplacemeﬁt The v_ortgx Ve It turns out that the velocities of the particles vary a great
lPC'ty is calculated using a time steft=0.5 s, which is 3-4 . deal according to which region of the flow a particle
times larger than the intervals between the calculated vortic

ity fields. t id the infl f noi due to the finit Ssamples. In particular, as will be explained in Sec. VA,
Ity Tields, 1o avol € Infiuence of noise, H.e 0 ”e Nt epeaks in the particle velocities correspond to advection in
resolution.r could also be called the mean “lifetime” of a

) . . egions between close, opposite-sign vortices. To make this
vortex. It is the time between two subsequent mergings o

h If a cl . ion b ikeos: bservation quantitative, we have developed a procedure to
the same vortex. If a close Interaction between two |l e'S'gh%amalyze the trajectories for flight events; some examples of

vortices leads to the destruction of one of the vortices, the[@he procedure are shown on Fig. 4. The flights are deter-
both vortices are judged to have undergone a merging. Theﬁ'!ined by searching for extrema of the velocity above a
\ is the total displacement of the vortex center in this timethreshold(taken as 0.80 cm/s, where the square root of the
interval. Addltlor)ally, we also measue,, defined as _the total, constant, system energy per unit area, is 0.71 cm/s).
length of the trajectory followed by the vortex center in theThe beginning and end of a flight event are defined by the
time interval in question. Likewise, we calculate the tOtaImaximum and minimum in acceleration before and after a
mean square dlsplagemefﬁ of the vortices(allowing for @ yg|ocity extremum. The absolute value of the acceleration is
vortex to merge on its way _ _ _ required to be above another thresh@ifiken as 0.3 cmf,

The typical time it takes for two like sign vortices 0 engyring that the flight corresponds to the time between
merge, is 5-10 times smaller than the time delay betweeQhen the particle enters and exits a flow region with high
successive mergings. We can thus treat the merging procegg|ocity. The conclusions stated in Sec. V' remain valid for a
as an instantaneous event. _ , variation of the above thresholds within15%. Events that

For each time, the mean is obtained by averaging over thgq ot start or stop within the finite duration of the trajectory
properties of all the vortices present in the system. In order tQ¢ ot counted: neither are events with their extremum ve-
track the vortex centers continuously, the intervals betweeqbcity occurring in the first 2 s of the experiment.
the calculated vorticity fields correspond to a small move- e stress that there does not exist a universal algorithm to
ment of the vortices, compared to the intervortex distanceyefine flights of particles in hydrodynamical flows. We have
We typically calculate 65-75 fields over the whole durationchecked for a large number of trajectories that our procedure
of the experiment. correctly identifies the events, that strike an observer “by

eye” as flights.
D. Tracer statistics IIl. MEASUREMENTS OF TEMPORAL SCALING

To investigate the properties of passive particles moving PROPERTIES
with the fluid, we have performed numerical integrations of
the trajectories of imaginary particles. For a chosen initial
conditionx(t=0), the trajectoryk(t) is obtained by integrat- The time evolution of the vorticity field in a typical ex-
ing the equation periment is displayed in Fig. 5. As explained in Sec. Il A

A. Qualitative aspects
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v [em/s]

t [s]

FIG. 4. Examples of flight identification. We show the velocities
of single advected particles; regions defined as flights by the proce-
dure described in Sec. Il D are marked with a thick lifEnere are
added 2, 4 and 6 cm/s to the upper curves in order to separate the
curves)

above, we arrange the magnets such that the initial forcing
produces an &8 array of vorticegupper image Rapidly,
like-sign vortices start to merge, almost exclusively with one
of their initial nearest like-sign neighbors. Fewer and larger
structures are thus formed, as one will see turning to the
middle image, obtained after 5 s. Both well-formed vortices
and pairs in the midst of a merging are visible. Dipole for-
mation is in general observed throughout the decay, but these
will usually not move very far—either because one of the
vortices breaks off and merges with another vortex, or sim-
ply due to the constraining action of the field of the sur-
rounding vortices. Finally, at=28 s(lower image, the en-
ergy is so small that no further evolution of the vortices can
be observeq. With the _|n|f[|al .Iarge number Of. VOFtICGS,.ChO- ualitative evolution of the flow from a large number of small vor-
sen to obtain good statistics in the decay regime, the IIm'te‘gces, to a smaller number of larger vortices. The overall exponen-

experimental time(s_ee.Sec. Il Bdoes not.allow us .to rea}ch tial decline of the energy does not allow the final dipole state to be
the final state. This is, however, possible starting with ggached. Topt=0 s (initial field). Middle: t=5 s. Bottom:t

smaller number of vortices, see RER1]. =28 s. Time is not rescaled here.

FIG. 5. Examples of calculated vorticity fields, showing the

B. Scaling laws one sees that fa* <1 s the influence of the ordered initial

We present measurements that are a mean over nine esenditions progressively gives way for a power law; fér
perimental realizations. In this system, remarkable, station> 10 s the energy has diminished to a few percent of its
ary features are apparent only for quantities averaged ovenitial value, and the vortices start to disappear compared to
some realizations. The fluctuations observed between indthe experimental noise. In between, a power law takes place,
vidual realizations provide a basis to calculate an error barand the corresponding exponent we find is
Figure 6 shows the evolution of the number of vortices ob- 070501
tained after ensemble averaging. A power law applies for the N=t =05 ®
time period 1 s<t* <10 s. Plotting the points on a semilog
scale shows a clear incompatibility with an exponential law.The error bar results from the variation in the included indi-
Furthermore, when plotting the logarithmic slope M(t) vidual runs. We have checked that we obtain similar results,
(inset in Fig. 6 a plateau appears for the above time periodstarting with 6x6 and 10< 10 initial arrays of vortices.
thus confirming the algebraic decay of the vortex number. Figure 7 represents geometrical characteristics of the sys-
Concerning the time period where the scaling is observedem, i.e., the vortex radius, and their separation distance as a
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FIG. 6. Number of vortices vs time, average of nine realizations. FIG. 8. Time evolution of dynamical quantities: extremum vor-
Straight line:t~%7. Inset: logarithmic slope of the curve. ticity, enstrophy and kurtosis. Full lines: 1%, t~ %47, andt®*

function of the rescaled time. Both quantities increase, show- The conservation of the extremum vorticity is a basic as-
ing that the geometry expandalbeit at slow ratesas time  sumption in the theory3]. Here we find a slight decay,
increases. For the period frot=1.5 to 10 s, we find the which is probably due to a finite Reynolds number efi@st
laws seen as well in numerical studig$)).

Let us now systematically compare our results to the
theory[Eqg. (1)]. If we take 0.7@:0.1 as the value defining
the exponeng, we expect an exponent 0.28.025 for the
increase of the vortex siza(t), and 0.35:-0.05 for the dis-
tance between vortex centerd). These agree well with the
experiment.

Another way to test the theory is to whether the internal
ations proposed by the theory agree with the experiment.
QD\ccording to the theory, one should have

p(t)~t_0'70:0'1

a(t)NtO.ZtO.Oﬁy (9)

F(t)~0-380.08

Other quantities, the enstrophy and the kurtosis of the SYSol
tem, along with the extremum vorticity, are represented i
Fig. 8 (the enstrophy and extremum vorticity are correcte
for the overall exponential decline of the energy

If power laws are assumed, for the period 2<g&
<10 s, they read

E:pngla41 Z=pngtaz.

In Fig. 9 we plot the ratio€/pw?Za* and Z/pw?,a®.
Within 10 %, plateaus are found, showing that the above
relations hold in the experiment.

The laws for the kurtosis and the enstrophy, while having
the right signs, are slowdfaste) than the prediction$Eq.

Wext t* —0.15+0.04
7

VE

E ¥ —0.47:0.06
H

(10) (1) givest®3*for the kurtosis, and~°3*for the enstrophy
and the power laws are not so well defined. The deviations
KU —t* 013501 can be interpreted in the framework of a finite-Re diffusive
14 |
*«i
Nu
85 1.2 fo o
(=N o
N E ° . o e o * . *
o_.a °©* o, * ol e
r A T T S ¢
N“ . . 8 o o ;
N'ﬂ
S 08
(=
a N
0.6
| | L | | L M|
2 3 4 5 6 7 8910 1 10

t [s] t [s]

FIG. 7. Time evolution of geometrical quantities: density of
vortices p, mean separation, and mean radiug, as a mean of
nine realizations. Straight lines7 %7, t%38 andt®2.

FIG. 9. Test of the expressiofs=pw?3,a’ for the system en-
ergy (circles and Z=pw§x@2 for the enstrophy(diamonds. On
plotting the ratios plateaus are formed.
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effect[4], as for the extremum vorticity. Assuming a decay 15
of extremum vorticity aswe,~1t~ ", would alter the scaling -
equationg1) to .

a~t§/4+ V/2, Kuwt§/27vl Z~t7§/27vl

under the condition that the average circulation of the flow 10
remains constant under diffusion, which is approximately i H ]
fulfilled in the experiments. This gives, in rescaled quantities
and with »=0.15, a~t%?5 Ku~t%?° and Z/E~t~ %5

These exponents are indeédr the enstrophy and the kur- - O
tosig closer to the values seen in E4.0), and still accept- 5 | |
able for the radius. However, we note that the algebraic EV%
laws are not so well defined for the enstrophy and especially
not for the kurtosis: a probable reason for this is that at early
times of the decay regime, the vortices are small and the i ] i
accuracy of the measurement of these two quantities is low. " ]
To sum up, we find good agreement between the experimen- 0 B e e
tal results and the self-similar decay thed4y, the value of
¢ being determined tg=0.70+ 0.1 consistent with numeri- x [cm]
cal estimates.

For completeness, we list here the prefactors involved in FIG. 10. Some trajectories of vorticéines), and passively ad-

relation (9). Writing such relations in the forms vected particlegpoints, with approximately equal time spacings.
The analysis uses five times the shown resolytiBarts of particle

y [em]
~
AN

. t\ —070 trajectories defined as a flight are shown with a gray (ingecto-
p~KpE T ) ries to the upper left and lower right
{1021 )\tr~to'49:0'09,
~K —
a aﬁ(?’) ' \ ~0-45:0.10
f~K.L 1 038 Note that the prefactor fox;, is a factor of 3 smaller than the
7 prefactor fork, signifying an intricate movement of the vor-
tices.
where £ and 7 are given by Eq(2), one obtains the esti- Indeed, one expects and r to have the same behavior,
mates since the mean velocity of the vortex centers is constant ac-
cording to Eq.(1). For an explicit comparison, in Fig. 12 we
K,=0.043, plot the ratio\/7 and the velocityu of vortex centers mea-
sured directly. Both quantities decrease slightly, however,
Ka=1.99, the velocity approximately, as %% in the above time inter-
val.
Kr=5.85. In Fig. 13 we showa?, calculated for the 34 vortices

. . _tracked throughout the whole experimental tirfieey are
These prefactors may have interest for a comparison with

other experiments, and numerical simulations.

IV. MEAN FREE DISTANCE, COLLISION TIME, eo o,
DIFFUSION COEFFICIENT 10 Mk” E

A. Measurements . . oo o o

Turning now to the dynamical features of the vortices, in | W A ]

Fig. 10 we show some typical vortex trajectories. These con- 00?® ces,

firm the general impressiofBec. 11l A) that the vortices do 1 W =

not move far in the system. :
In Fig. 11 we plot the quantitie’s, \,, andr (as defined

in Sec. Il Q versus time on log-log scale. The data are from

the same experiments as in Sec. Ill. ! t [s]
All three quantities grow as a power law for times 1.5's

t< 7 s, and with exponents that are close. We find the fol- FIG. 11. Time evolution of the mean free distancethe mean

lowing laws: free distance measured by the length of the trajectories between

mergings\,, and the collision timer. Straight linest%4°, %43
7'~t0'57i0'12, (11) andt°'57.

T T T T
L]
L )

10



7268 A. E. HANSEN, D. MARTEAU, AND P. TABELING PRE 58

1 T T — 10 . . . i

’o"...'.o.o.-'°'......_ ) E .®
[ ) u ] ov .
0po00° o i
[o]
ooooooooooooooooOo_ 1: -
IR i ]
k 1
L L 4
L ]
0.1 . : : — 0.1 . : : —
1 : 10 1 . 10
t [s] t [s]
FIG. 12. Ratioh/7, and the vortex velocity. FIG. 14. Invariants\Na and o2/ ut*. Straight lines are shown

for comparison.
allowed to undergo mergingsA well-defined power law is

observed. For the time interval 1.2<st < 7 s, we find N~ 7~ (UDE_ (3¢ (15)
o2~11301 (12 With the obtained valuet=0.7, we should haver~\
~1%5 which is in agreement with the observed power laws
So the vortices move hyperdiffusively. (1D).
To further test Eq(13), in Fig. 14 we plot the product
B. Discussion ANa, as given by the data. A clear plateau is observed for

. i 5 os<t< i i i
The exponents observed can be understood in terms oftfa\mes 1.5 s<t=7's, corresponding to the scaling regime of

simple geometrical argument. Estimate as the distance
traveled by a vortex in unit time~fu, the invariant advec-
tion velocity), divided by the probability of suffering a col-
lision in this time interval (-u times the collisional cross
section times the density of vortigeShen

u 1 o?=Dt. (16)
AN~ (13 o -
uop pa EstimatingD as the mean free path squared divided by the

. - . ) collision time gives
since the collisional cross section is proportional to the ra-

On the whole, we conclude that expressi¢h3) and(14)
for A and 7 are confirmed by experiment. The power law for
o2 can be understood as follows: introduce a vortex diffu-
sion coefficientD by

dius for a system of circular disks. The collision times D=\u. (17)
simply
Thus the growth in length scale cauggso grow as well.
N 1 Further, the mean square displacement of the vorti:feis
U pau 14 now given by

2 _Dt~
Inserting the algebraic laws for the time evolutionaofind o°~Dt~hut. (18)

p, one arives at If D had been constant, one would have that-t, that is,

Brownian motion of the vortices. But no® increases with
time, and in turn the variance grows faster thafEquation

C 1 (18) can be further tested directly, by pIottirzﬁ/()\ut) ver-
66000 00T © O T sus time(see Fig. 14 A plateau appears for times larger
10 & ANa . than 1.5 s, so Eq.18) is well verified by experiment.

2 3 It is tempting to infer, from the above relations, a formula
betweené and an exponent characterizing the temporal evo-
o /rutt | lution of the mean square displacement of the vortex centers.
: —o_-_._._._._-_._._r._._._.vT..._.-_° E From Egs(13) and(18), one may deduce thatif> grows as
s ] t¥, one must have the following relations betwegeand v:

100 ¢ , .

v=1+3¢ (19

0.1

1 t [s] 10 By taking §=0.7, one should find the mean square displace-
ment of the vortices is characterized by an exponent equal to
FIG. 13. The mean square displacement of the vortiees  1.5. This is a bit larger than the observed exponent, which is

calculated for 34 vortex trajectories. Straight liné?. 1.3; the reason is that systematic errors add so as to violate
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FIG. 15. The mean square displacement of 3200 passive, imagi- f
nary particles(circles and a subset of 2208 particles not entering  FIG. 16. Probability distribution of flight times. Straight line:
high-vorticity regiong(line). The latter curve has been divided by 2. t; °®. Inset: the same distributiofthick line), along with the dis-
The two curves are almost indistinguishable. Inset: the logarithmigribution of flights with extremum velocity occurring betweéh
slope of the overall mean. =2-5 secondsthin line), andt* =5-10 s(dotted line.

Eq.(19). The main factor is that is not exactly constant, but shows a clear plateau, thus defining a dispersion coefficient
slightly decreases with time. In practice, one can say thafor intermediate times, with the valug’~t'%° As a mean
relations(13) and (18) are consistent with the experiment, over three experiments, we find

and the corresponding straightforward relati@®) must be

taken as an approximate formula expressing the existence of

a link between the exponent characterizing the decay, and o2~1l4x0.1 (20)

that characterizing the dispersion of the vortices in the ex-

periment.

It is remarkable that this exponent is indistinguishable from
V. DISPERSION OF PASSIVE PARTICLES that corresponding to the mean square displacement of the

. . . . . yortex centers.
In this section, we present studies of the dispersion of

passive, imaginary particles, where the trajectories are ob-
tained as described earlier in Sec. 1l D. To demonstrate the
qualitative behavior of the particle motion, in Fig. 10 we  To trace the origin of the hyperdiffusion observed for pas-
show some examples of particle trajectories. We note thagive, imaginary particles, we have analyzed the computed
trapping effects are not visible. Particles can enter vorticesracks for flight events, as described in Sec. Il D. The flight
during mergers, and, surely for some of the random initiatime distribution in Fig. 16 is a result of this procedure. 5700
conditions, begin in the core of the vortices, but the particlesparticle tracks have been analyzed, giving a total of 4400
tend to be rapidly ejected, both during mergers and as aflight events. For flights longer than 1.5 and less than 6 s,
effect of the straining of vortices due to the surroundingthe distribution follows a power law. For long flights, the
field. The observation that the vortex cores are characterizestatistics will be influenced by the finite duration of the tra-
by a low tracer density is in qualitative accordance with Ref jectories(recall that the total duration of the experiment is
[12]. Here we want to make it clear that trapping in vortices10.4 s); this explains the rapid decreaseHft;) for t;
and sticking on their periphery are not effects that seems-6 s. We conclude that the distribution of flight times has
important for the particle dispersion; indeed, well-definedan algebraic tail, with a law given by
trappings are too rare to justify a detailed analysis. Flights, or
parts of the trajectories with a velocity persistently higher
than the mean velocity, are, on the other hand, often ob- P(tg)~t; 2602, (21)
served.

In Fig. 15 we show the mean of the absolute squared
displacement? of the particles. A clear power law emerges We have investigated the temporal evolution of the charac-
for times between 1 and 7 s. The detailed nature of the disteristics of this distribution; this is shown in the inset of Fig.
persion can be appreciated in the inset, which shows th&6. The plot also shows the same analysis, but performed
logarithmic derivative of the preceding points. For smallover a smaller range of time, so as to see how the character-
times, the exponent decreases from 1.8, while, from istics of the distribution evolves with time. Although the sta-
=6 s, the exponent drops to 1. The small and large timdistics is on the border of being sufficient to draw reliable
behavior is thus in accordance with the classical predictiortonclusions, it seems that the tails stay parallel to each other
[22]. However, the change in exponent is not smooth, buss time increases, which means that the slope of the distri-

Characterization in terms of flights
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pose thus suggests that, as far as dispersion is concerned,
vortices essentially behave like particles of an ordinary two-
dimensional gas in an expanding geometry.

Incidently, the power laws governing the mean free path
N\ and the collision timer deserve a few comments. It has
been proposed that a collision timé can be defined from
the equationdN/dt=—N/27'. 7' measures the mean time
by which the population of vortices has decreased by one
half. Defined in this ways’ is proportional tot, whatever
the exponent at hand in the expressiomNgf). The collision
time = we measure increases with time at a slower rate. But
7' correspond to another kind of average, and it is not clear
whether it defines a quantity of dynamical relevance for the
problem at hand.

The exponent we find for the collision time can be further
applied to a few theoretical attempts; in R3], it was pro-
posed thatr.,~t¢, not in agreement with our measurements
[Eq. (1D)]. In the context of 2D ballistic agglomeration of
hard spheres with a size-mass relation mimicking the energy
conservation rule for vorticed 0], a relation answering Eq.
(13) holds in numerical simulationg23]. But, as a conse-
guence of a decreasing velocity of the aggregates, the colli-
sion time scale grows proportionally td, making the anal-

bution does not vary with time. It thus seems that the distri-09Y difficult. One may also mention that a relation between
bution are not sensitive to the fact that the system expandghe decay parametérand the vortex dispersion exponent
We have also investigated in which regions of the flowwas been proposed recen{l#4]. The expression is/=2
the particles move when they are subject to a flight. As dem=£/2. It turns out, however, that for the observed valdes
onstrated in Fig. 17, flights predominantly occur for particles=0.7 andv=1.3, this relation does not agree with the ex-
located between opposite-sign vortices. This is not surprisperiment.
ing, since the regions between two close opposite-sign vor- Having proposed that the vortices essentially diffuse in an
tices are characterized by large velocities, forming a jetlikeexpanding geometry, we have, with a seminumerical
structure. Thus there is a straightforward physical explanamethod, examined the motion of passive particles in the sys-
tion for the occurrence of flights. tem. These move hyperdiffusively, and we have shown the
~ The exponents we find for the flight distribution are con-presence of Levy flights, controlled by the jets formed by the
sistent with those for the variance. According to REf],  dipoles. We thus have a nonuniformity of the physical pro-
we effectively haver®~t*~2°~t14 in good agreement with cesses at work: the particles linked to the highest vorticity
the previous resulEq. (20)]. This shows that we can regard |eyels undergo Brownian motion in a dilating geometry,
the hyperdiffusion for the passive particles as anomalousyije those visiting the background undergo stationary Levy
that is caused by extrentéight) events. flights. The fact that two different diffusion processes hold in
the same system is conceivable on physical grounds. The
V1. DISCUSSION AND CONCLUSION highest vorticity levels are linked to structures of appreciable

Let us first underline the good agreement between thépatial extent, affected by the collective action of several
experimental results obtained in Sec. 1l B and the theoretica]€/ghPoring vortices, whereas individual particles are sensi-

predictions and previous numerical studi4]. For the t|v_e to the local flow produced by individ_ual structurgs or
geometrical quantities, the agreement is excellent, and theairs of struct_ures. The re_markable fact is that, despite the
value ofé= 0.7 0.1 is close to the numerical estimates. different physical mechanisms at work, both processes are

For the dynamical quantities, the enstrophy and the kurcharacterized by the same exponent+031. In freely de-
tosis, the behavior is close to the prediction of the scalingaying turbulence, the whole dispersion process seems to be
theory, when including a diffusive decay of the extremumcharacterized by a single exponent. We may finally underline
vorticity [4]. Deviations are probably due to lack of resolu- the close relationship between the decay and the dispersion
tion at early times in the experiment. In conclusion, our ex-problems, expressed by relati¢h9); in a situation where
perimental results largely confirm the analysiq 8 Levy flights control the dispersion processjs expected to

We have further investigated new quantities, such as theange between 1 and 2, so that the domain of variatio& of
collision time scale of the vortices and the vortex diffusionextends between 0 arfd This illustrates that the dispersion
coefficient, with good confirmation from measurements.processes may restrict the range of possible valueg for
Thus we have successfully characterized the dynamical beStated differently, the fact that the vortices cannot move in
havior of the vortices, which is shown to be hyperdiffusive.an arbitrary way induces constraints on the decay regime of
The origin of this lies in the general scale dilation in the turbulence. One may ask whether such constraints are strong
algebraically decaying vortex system. The picture we pro€enough to select a particular value &f

FIG. 17. Vorticity field tot=8.5 s. The positions of particles
undergoing a flight are marked with black squares.
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