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Two-dimensional turbulence and dispersion in a freely decaying system

A. E. Hansen,* D. Marteau, and P. Tabeling
Laboratoire de Physique Statistique, E´ cole Normale Supe´rieure, 24 rue Lhomond, 75231 Paris, France

~Received 8 October 1997; revised manuscript received 12 March 1998!

We report experimental results obtained on freely decaying two-dimensional turbulence. The flow is pro-
duced in a thin stratified layer of electrolyte, using an electromagnetic forcing. The velocity and vorticity fields
are measured using a particle image velocimetry technique. The study of the temporal evolution of the system
confirms in detail the scaling theory of Carnevaleet al. @Phys. Rev. Lett.66, 2735~1991!#; the experimental
value we find for the exponent characterizing the decay of the vortex density isj50.760.1. We further
measure the collision timet, the mean free pathl, and the mean square displacementsv

2 of the vortices. We
find the following laws:t;t0.57, l;t0.45, andsv

2;t1.3. The statistics of passive particles~albeit virtual! in the
system is also studied. They move hyperdiffusively, with an exponent similar to that obtained for the vortex
motion. The dispersion of the particles is controlled by Le´vy flights, produced by the jets formed by the
dipoles. The distribution of flight timest f is t f

22.6. Further analysis of the data indicates that the vortices
undergo collisions whose geometrical aspects are analogous to those of an ordinary gas, and their motion is
essentially Brownian diffusion in an expanding geometry. We finally underline the close relationship between
the decay of turbulence and the dispersion phenomena.@S1063-651X~98!07410-8#

PACS number~s!: 47.32.Cc, 47.27.Qb
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I. INTRODUCTION

Two-dimensional~2D! turbulence has been considerab
studied in recent years, because of its applications in as
physics and geophysics, its relative accessibility to numer
computation, and as a fascinating field in its own right. T
formation of coherent structures or vortices has been es
lished both numerically and experimentally as a characte
tic feature of 2D turbulent flows. In freely decaying turb
lence, which is the issue we address here from
experimental point of view, the vortices tend to live lon
compared to their turnover time. From the time at which
coherent structures are formed, and until the final dipole s
has been reached, the governing dynamical processes a
mutual advection of vortices, and the inelastic merging
like-sign vortices. In this time regime, assuming a se
similar evolution of the vortex system, and taking the ene
per areaE as the only invariant, one would find on dime
sional grounds@1# that the density of vorticesr decreases
like r;E21t22. Numerical simulations, however, show
vortex number decay with a much slower rate@2–4#. To
account for this observation, Carnevaleet al. @3# proposed
the extremum vorticity of the core of the vortices,vext, as a
second invariant. Assuming further that the vorticity is co
centrated in vortices, they obtained the following scali
laws for the density of vorticesr, the vortex radiusa, the
mean separation between vorticesr , the velocityu of a vor-
tex, the total enstrophyZ, and the kurtosis Ku of the vortic
ity distribution:

r;L22S t

TD
2j

, ;LS t

TD
j/4

, ~1!

*Permanent address: CATS, the Niels Bohr Institute, Blegda
vej 17, 2100 Ko”benhavn O” , DK. Electronic address
aehansen@nbi.dk
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r;LS t

TD
j/2

, u;AE,

Z;T22S t

TD
2j/2

, Ku;S t

TD
j/2

,

in which the length scaleL and time scaleT are defined by

L5vext
21AE, T5vext

21. ~2!

The exponentj is not determined by the theory. Numeric
studies, both of the full Navier-Stokes equations and
point-vortex models, have consistently given valuesj
50.71–0.75@3,4#. On the experimental side, early investig
tions of the decay regime@5,6# confirmed that, as time in-
creases, the vortex population becomes depleted and
mean vortex size increases. However, an accurate quan
tive analysis of the phenomenon was not successf
achieved. Recently, two authors of the present paper m
detailed measurements of the decay regime of quasi-t
dimensional flows@7#. However, in the system they ex
plored, three-dimensional perturbations were suggeste
play an important role. All this means that, at the mome
our knowledge of the phenomenon essentially relies on
merical studies.

Theoretically, several attempts have been made to de
mine j @8–11#. Based on the scaling laws~1!, one of the
authors of Ref.@4# proposed a derivation that yieldsj51,
but argued for lowering corrections@8#. On the other hand
on the background of a theoretical approach using a pro
bilistic method to describe the motion of vortices in an e
ternal strain-rotation field, it has been suggested that
value of j depends on initial conditions@9#. In a related
context, the 2D ballistic agglomeration of hard spheres w
a size-mass relation mimicking the energy conservation
for vortices, the valuej50.8 is derived under mean-fiel
assumptions@10#. Further, in another possibly related co
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text, that of Ginzburg-Landau vortex turbulence, the va
j5 3

4 has been proposed@11#. Despite these attempts, it
fair to say that a convincing theoretical argument determ
ing the decay parameterj is still lacking.

Some of the theoretical attempts mentioned above bea
an analogy between the free decay of turbulence and
temporal evolution of populations of particles moving ra
domly and undergoing nonelastic collisions. At the mome
such an analogy has not been tested against experimen
any extent. In particular, no measurements of the aver
time between two successive mergings and the corresp
ing vortex path lengths~which would represent the collisio
time and the mean free path, respectively! are available. The
experimental approach to this question is indeed to study
displacement of the vortices, and since vorticity—to a cert
extent—behaves as a passive scalar in 2D flows, this n
rally leads one to address the general problem of disper
of passive particles in freely decaying turbulence. This pr
lem will thus be investigated in our paper. On the problem
dispersion in freely decaying turbulence, again no inform
tion is available at the present time. This situation contra
with stationary two-dimensional forced systems, for which
few cases have been investigated in some detail. For
domly forced turbulence it has been found numerically@12#
that the motion of passive particles is hyperdiffusive; the l
of growth of the variance of the trajectoriess2;tn seems,
however, to be characterized by a nonuniform behavior. P
vided the existence of power laws is assumed~which may be
questionable in some cases!, it is found that the exponentn
jumps from 1.3 to 1.6 depending on whether the tracer vi
hyperbolic or elliptic regions. Other stationary system
dominated by coherent structures, have been studied ex
mentally, and several exponents—all hyperdiffusive—ha
been reported. For unclear reasons, most of them lie in
range 1.5,n,1.6. This holds for flows in a rotating annula
tank@13#, flow in a vertically vibrated container for distance
smaller than the wavelength of the surface waves@14#, and
drifters in the upper ocean@15#.

The present paper reports an experimental investigatio
vortex turbulence along with passive particle dispersion i
freely decaying 2D system. The paper is organized as
lows. Turbulence is studied in Sec. III B, and compared
theoretical expectations. In Sec. IV the collision time f
vortices, the mean free path, and the mean square disp
ment of the vortices are studied. In Sec. V the statistics
passive particles, obtained by a numerical integration of
experimentally determined velocity fields, is presented.
shall in particular analyze the particle trajectories for Le´vy
flights @16#, using a general approach which has been fou
relevant in other systems@13,14,17#. We finally discuss the
link between the dispersion and the decay problems,
suggest a physical picture for the decay of two-dimensio
turbulence.

II. EXPERIMENTAL SETUP

A. Experiment

The experimental arrangement, shown in Fig. 1, is sim
to the one used in previous studies by two of the pres
authors~see Ref.@7#!. The flow is generated in a PVC cel
20327 cm2. The bottom of the cell is a glass plate 1 m
e
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thick. Permanent magnets of samarium cob
53833 mm3 in size, are located just below the glass pla
they are oriented so as to have a vertical magnetization a
Each magnet produces a magnetic field of approxima
0.3 T.

The cell is filled with two layers of a solution of NaCl, o
thickness 3 mm each. The layers have densitiesr151.14
andr251.29 g/cm3, where the heavier fluid is on the bo
tom. The density difference of the interface acts to prev
vertical velocities, and thus bidimensionalizes the flow. It
only the use of stratification that distinguishes the expe
mental procedure from the one used in Ref.@7#, but, as will
be shown in Sec. III B, this additional precaution has a p
found importance for the evolution laws of the vortices. T
two-layer structure also provides a mechanism for a ra
transfer of vorticity from the bottom~where the magnets ac
most strongly! to the free surface. The vertical reorganizati
of the flow has a maximum duration of 2 s; thereafter t
system can be regarded as two dimensional. However
will be described in Sec. II B, the bottom friction still acts
give an overall exponential decay of the flow field. See R
@18# for a thorough experimental investigation of these m
ters which strongly justifies the bidimensionality of th
setup, and Ref.@19# for numerical simulations which provide
additional supporting evidence.

The flow boundaries in the horizontal plane are formed
solid rods of length 15 cm. The height of the rods equals
depth of the fluid, so as to prevent the formation of a men
cus. An electric current is driven through the cell from o
side to the other, creating a force proportional to the curr
density which acts both horizontally and vertically on t
fluid. The horizontal component of the forcing is dynam
cally active, while the vertical one is equilibrated by a pre
sure gradient. The structure of the initial flow is imposed
the arrangement of the magnets. The magnets are place
create a 838 array of vortices, with nearest neighbo
counter-rotating. Typical values of the current range fro
200 mA to 1 A, the supply being controlled by a comput
The experimental procedure consists in imposing a cons
electrical currentI at time t52t, switching it off at t50,
and letting the system relax. The initial value of the Re
nolds number, calculated on the scale of the system, is t
cally Re51800.

B. Effect of bottom friction

In a transient time period of maximum duration 2 s af
the forcing, the flow field reorganizes into a stationary ve

FIG. 1. The experimental setup~sketch!.
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PRE 58 7263TWO-DIMENSIONAL TURBULENCE AND DISPERSION . . .
cal profile @18#. Thereafter, the only effect of tridimension
ality is the friction on the bottom of the cell, causing th
energy to decay exponentially,E5Eoexp(22at). In Fig. 2
we plot the evolution of the energy for a typical experime
The time constant 2a agrees with the characteristic time fo
the relaxation of a Poiseuille profile 1/2a52b2/p2n, where
b is the total thickness of the fluid layer andn is the kine-
matic viscosity.

The friction against the bottom can in the case of a s
tionary velocity profile be represented by a linear term in
2D Navier-Stokes equations, or in terms of the vortic
v(x,y),

] tv1J~v,c!5n¹2v2av, ~3!

where v52¹2c, and J(•,•) is the Jacobian. In order to
counterbalance this term we apply the transformation

v~w,y,t !→ṽ~x,y,t !e2at, ~4!

and rescale the time asat* 512e2at. One then arrives at

] t* ṽ1J~ṽ,c̃ !5n* ¹2ṽ, ~5!

wheren* 5eatn. The flow is therefore equivalent to a two
dimensional flow with a time dependent viscosity. In t
limit of high Reynolds numbers, it is legitimate to discard t
temporal variation of the viscosity and confront the expe
mental results to pure two-dimensional systems using a c
stant viscosity.

All measurements of temporal properties will hereafter
expressed in terms of the transformed timet* . Note that
under the transformation the maximal observational time
ta* 51/a.

C. Determination of the velocity field and related quantities

The method of determination of the velocity field has a
been described in a previous paper@7#; here we summarize
its essential aspects. The flow is visualized using cluster
neutrally buoyant particles, several tens of microns in s
Those particles are made visible by illuminating the flu
from above with an halogen lamp. The images of the fl
are captured with a video camera and recorded on a v
tape.

FIG. 2. The evolution of the system energy per area. Stra
line: e20.14t.
.
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During the decay process, an audio signal is generate
the sound channel of the video tape recorder, so as to id
tify each frame of the video signal. In a second step,
video frames are digitized, ordered, and recorded
magneto-optical disk. The method we use consists of
cretizing the flow surface on a grid. For each node, we co
pute the correlation of the intensity field between two fram
separated by a time intervaldt on a box of sizel c3 l c . The
position of the maximum of the correlation provides info
mation about the mean displacements of the pattern of
minated particles. For the flow we consider, we use
35 pixel/cm spatial resolution, and 40340 measuremen
points. To correct clearly erroneous velocity vectors, the
cal divergence~or any ‘‘test’’ function of the derivatives! of
the velocity field is computed and, if it exceeds some thre
old value, we replace the aberrant value by the local aver
of the velocity. This occurs on average at three or four poi
in any velocity field.

The calculations are performed on a microcomputer,
sisted by a double digital signal processor Digital Signal P
cessing 32C. To compute the local derivative and the vor
ity field, we determine a polynomial fit for each compone
of the velocityvx andvy ; the derivatives are calculated from
the fit. In practice, we use a polynomial of degree 2. Co
pared to spectral techniques, this method has the advan
of conserving all the moments, up to the degree of the fitt
polynomial.

When the velocity and vorticity fields are determined, w
calculate the following three spatially averaged moments:
energy per areaE, the enstrophyZ, and the kurtosis of the
vorticity distribution Ku, as

E5
1

L2E dx
u2

2
,

Z5
1

L2E dx v2, ~6!

Ku5
1

Z2

1

L2E dx v4.

Furthermore, we determine the evolution of the geome
cal properties characterizing the flow, namely, the numbe
vorticesN, their mean radiusa, and their mean separationr .
To define a vortex, we search for valuesuv(x,y)u of the
vorticity field around a unique, local extremavext such that
vext.uv(x,y)u.vs , wherevs is a threshold. We use value
of the threshold such that the initial number of vortices
correctly determined. In practice this gives a ratiovs /vext
;0.4 to 0.6. We have verified that this method is in acc
dance with theWeiss criterion~see e.g., Ref.@20#! that as-
sociates the coherent structures to the areas of the flow
a negative determinantQ of the velocity gradients. Our pro
cedure is an alternative to the rather constraining selec
method of Ref.@2#.

An example of how this procedure works is shown in F
3. The characteristic vortex sizea is found from the mean
area occupied by the vortices. The mean distancer between
the vortices is found by averaging over the distances betw
nearest neighbors.

t
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Finally, we study the dispersion of the vortices. The p
sition of a vortex is defined by the position of the vortici
extremum. We measure the following quantities: the me
velocity u, the mean collision timet, the mean free distanc
l, and the mean squared displacementsv

2 . The vortex ve-
locity is calculated using a time stepdt50.5 s, which is 3–4
times larger than the intervals between the calculated vo
ity fields, to avoid the influence of noise, due to the fin
resolution.t could also be called the mean ‘‘lifetime’’ of a
vortex. It is the time between two subsequent mergings
the same vortex. If a close interaction between two like-s
vortices leads to the destruction of one of the vortices, t
both vortices are judged to have undergone a merging. T
l is the total displacement of the vortex center in this tim
interval. Additionally, we also measurel tr , defined as the
length of the trajectory followed by the vortex center in t
time interval in question. Likewise, we calculate the to
mean square displacementsv

2 of the vortices~allowing for a
vortex to merge on its way!.

The typical time it takes for two like sign vortices t
merge, is 5–10 times smaller than the time delay betw
successive mergings. We can thus treat the merging pro
as an instantaneous event.

For each time, the mean is obtained by averaging over
properties of all the vortices present in the system. In orde
track the vortex centers continuously, the intervals betw
the calculated vorticity fields correspond to a small mo
ment of the vortices, compared to the intervortex distan
We typically calculate 65–75 fields over the whole durati
of the experiment.

D. Tracer statistics

To investigate the properties of passive particles mov
with the fluid, we have performed numerical integrations
the trajectories of imaginary particles. For a chosen ini
conditionx(t50), the trajectoryx(t) is obtained by integrat-
ing the equation

FIG. 3. An example of a vorticity field, illustrating the proce
dure used to identify the vortices. The areas identified as vorti
with the procedure described in the text, are colored uniform
Areas colored white correspond to positive vorticity, and areas
ored black to negative vorticity.
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dx~ t !

dt
5v~x,t !. ~7!

The derivativesv(x) are given by the experimentally dete
mined velocity fields. As above, the velocity fields are fou
with small, regular time intervals, to ensure that the velo
ties only change slightly. The 40340 velocity fields are in-
terpolated in space and time, and the trajectories are ca
lated using a standard fourth order Runge-Kutta method w
adaptive stepsizing.

We find that this is an effective method for extractin
statistical quantities from the flow fields. It allows us to a
erage over a large number of trajectories, and thus to ob
statistics that would be difficult to achieve experimental
The imaginary particles are indeed truly passive, so we
not have to consider the question of Stokes drag or sim
experimental problems. On the other hand, since there
limited resolution of the velocity field~0.375 cm between
neighboring vectors!, it is clear that the particles cannot co
rectly sample motions on a much smaller scale. To this po
we remark that in any case the quantity we are interested
namely, the mean square displacements2 of the particles, is
determined by the large scale properties of the flow~and

already after 1 s the typicalAs2.0.7 cm). In the calcula-
tions presented we use an ensemble of 3200 trajectories
initial conditions uniformly distributed over the experiment
domain.

It turns out that the velocities of the particles vary a gre
deal according to which region of the flow a partic
samples. In particular, as will be explained in Sec. V
peaks in the particle velocities correspond to advection
regions between close, opposite-sign vortices. To make
observation quantitative, we have developed a procedur
analyze the trajectories for flight events; some examples
the procedure are shown on Fig. 4. The flights are de
mined by searching for extrema of the velocity above
threshold~taken as 0.80 cm/s, where the square root of
total, constant, system energy per unit area, is 0.71 cm
The beginning and end of a flight event are defined by
maximum and minimum in acceleration before and afte
velocity extremum. The absolute value of the acceleratio
required to be above another threshold~taken as 0.3 cm/s2),
ensuring that the flight corresponds to the time betwe
when the particle enters and exits a flow region with hi
velocity. The conclusions stated in Sec. V remain valid fo
variation of the above thresholds within615%. Events that
do not start or stop within the finite duration of the trajecto
are not counted; neither are events with their extremum
locity occurring in the first 2 s of the experiment.

We stress that there does not exist a universal algorithm
define flights of particles in hydrodynamical flows. We ha
checked for a large number of trajectories that our proced
correctly identifies the events, that strike an observer ‘
eye’’ as flights.

III. MEASUREMENTS OF TEMPORAL SCALING
PROPERTIES

A. Qualitative aspects

The time evolution of the vorticity field in a typical ex
periment is displayed in Fig. 5. As explained in Sec. II

s,
.
l-
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PRE 58 7265TWO-DIMENSIONAL TURBULENCE AND DISPERSION . . .
above, we arrange the magnets such that the initial forc
produces an 838 array of vortices~upper image!. Rapidly,
like-sign vortices start to merge, almost exclusively with o
of their initial nearest like-sign neighbors. Fewer and larg
structures are thus formed, as one will see turning to
middle image, obtained after 5 s. Both well-formed vortic
and pairs in the midst of a merging are visible. Dipole fo
mation is in general observed throughout the decay, but th
will usually not move very far—either because one of t
vortices breaks off and merges with another vortex, or s
ply due to the constraining action of the field of the su
rounding vortices. Finally, att528 s~lower image!, the en-
ergy is so small that no further evolution of the vortices c
be observed. With the initial large number of vortices, ch
sen to obtain good statistics in the decay regime, the lim
experimental time~see Sec. II B! does not allow us to reac
the final state. This is, however, possible starting with
smaller number of vortices, see Ref.@21#.

B. Scaling laws

We present measurements that are a mean over nine
perimental realizations. In this system, remarkable, stat
ary features are apparent only for quantities averaged
some realizations. The fluctuations observed between i
vidual realizations provide a basis to calculate an error b
Figure 6 shows the evolution of the number of vortices o
tained after ensemble averaging. A power law applies for
time period 1 s,t* ,10 s. Plotting the points on a semilo
scale shows a clear incompatibility with an exponential la
Furthermore, when plotting the logarithmic slope ofN(t)
~inset in Fig. 6! a plateau appears for the above time peri
thus confirming the algebraic decay of the vortex numb
Concerning the time period where the scaling is observ

FIG. 4. Examples of flight identification. We show the velociti
of single advected particles; regions defined as flights by the pr
dure described in Sec. II D are marked with a thick line.~There are
added 2, 4 and 6 cm/s to the upper curves in order to separat
curves.!
g
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one sees that fort* ,1 s the influence of the ordered initia
conditions progressively gives way for a power law; fort*
. 10 s the energy has diminished to a few percent of
initial value, and the vortices start to disappear compared
the experimental noise. In between, a power law takes pl
and the corresponding exponent we find is

N5t20.7060.1. ~8!

The error bar results from the variation in the included in
vidual runs. We have checked that we obtain similar resu
starting with 636 and 10310 initial arrays of vortices.

Figure 7 represents geometrical characteristics of the
tem, i.e., the vortex radius, and their separation distance

e-

the

FIG. 5. Examples of calculated vorticity fields, showing th
qualitative evolution of the flow from a large number of small vo
tices, to a smaller number of larger vortices. The overall expon
tial decline of the energy does not allow the final dipole state to
reached. Top:t50 s ~initial field!. Middle: t55 s. Bottom: t
528 s. Time is not rescaled here.
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7266 PRE 58A. E. HANSEN, D. MARTEAU, AND P. TABELING
function of the rescaled time. Both quantities increase, sh
ing that the geometry expands~albeit at slow rates! as time
increases. For the period fromt51.5 to 10 s, we find the
laws

r~ t !;t20.7060.1,

a~ t !;t0.2160.06, ~9!

r ~ t !;t0.3860.08.

Other quantities, the enstrophy and the kurtosis of the s
tem, along with the extremum vorticity, are represented
Fig. 8 ~the enstrophy and extremum vorticity are correc
for the overall exponential decline of the energy!.

If power laws are assumed, for the period 2 s,t
,10 s, they read

vext

AE
;t* 20.1560.04,

Z

E
;t* 20.4760.06, ~10!

Ku ;t* 0.1360.1.

FIG. 6. Number of vortices vs time, average of nine realizatio
Straight line:t20.7. Inset: logarithmic slope of the curve.

FIG. 7. Time evolution of geometrical quantities: density
vorticesr, mean separationr , and mean radiusa, as a mean of
nine realizations. Straight lines:t20.7, t0.38, andt0.21.
-

s-
n
d

The conservation of the extremum vorticity is a basic
sumption in the theory@3#. Here we find a slight decay
which is probably due to a finite Reynolds number effect~as
seen as well in numerical studies@4#!.

Let us now systematically compare our results to
theory @Eq. ~1!#. If we take 0.7060.1 as the value defining
the exponentj, we expect an exponent 0.1860.025 for the
increase of the vortex sizea(t), and 0.3560.05 for the dis-
tance between vortex centersr (t). These agree well with the
experiment.

Another way to test the theory is to whether the intern
relations proposed by the theory agree with the experim
According to the theory, one should have

E5rvext
2 a4, Z5rvext

2 a2.

In Fig. 9 we plot the ratiosE/rvext
2 a4 and Z/rvext

2 a2.
Within 10 %, plateaus are found, showing that the abo
relations hold in the experiment.

The laws for the kurtosis and the enstrophy, while hav
the right signs, are slower~faster! than the predictions@Eq.
~1! gives t0.35 for the kurtosis, andt20.35 for the enstrophy#,
and the power laws are not so well defined. The deviati
can be interpreted in the framework of a finite-Re diffusi

. FIG. 8. Time evolution of dynamical quantities: extremum vo
ticity, enstrophy and kurtosis. Full lines:t20.15, t20.47, andt0.13.

FIG. 9. Test of the expressionsE5rvext
2 a4 for the system en-

ergy ~circles! and Z5rvext
2 a2 for the enstrophy~diamonds!. On

plotting the ratios plateaus are formed.
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effect @4#, as for the extremum vorticity. Assuming a dec
of extremum vorticity asvext;t2n, would alter the scaling
equations~1! to

a;tj/41n/2, Ku;tj/22n, Z;t2j/22n,

under the condition that the average circulation of the fl
remains constant under diffusion, which is approximat
fulfilled in the experiments. This gives, in rescaled quantit
and with n50.15, a;t0.25, Ku;t0.20, and Z/E;t20.50.
These exponents are indeed~for the enstrophy and the kur
tosis! closer to the values seen in Eq.~10!, and still accept-
able for the radiusa. However, we note that the algebra
laws are not so well defined for the enstrophy and espec
not for the kurtosis: a probable reason for this is that at e
times of the decay regime, the vortices are small and
accuracy of the measurement of these two quantities is
To sum up, we find good agreement between the experim
tal results and the self-similar decay theory@4#, the value of
j being determined toj50.7060.1 consistent with numeri
cal estimates.

For completeness, we list here the prefactors involved
relation ~9!. Writing such relations in the forms

r;KrL22S t

TD
20.70

,

a;KaLS t

TD
0.21

,

r;KrLS t

TD
0.38

,

whereL and T are given by Eq.~2!, one obtains the esti
mates

Kr50.043,

Ka51.99,

Kr55.85.

These prefactors may have interest for a comparison w
other experiments, and numerical simulations.

IV. MEAN FREE DISTANCE, COLLISION TIME,
DIFFUSION COEFFICIENT

A. Measurements

Turning now to the dynamical features of the vortices,
Fig. 10 we show some typical vortex trajectories. These c
firm the general impression~Sec. III A! that the vortices do
not move far in the system.

In Fig. 11 we plot the quantitiesl, l tr , andt ~as defined
in Sec. II C! versus time on log-log scale. The data are fro
the same experiments as in Sec. III.

All three quantities grow as a power law for times 1.5 s,
t, 7 s, and with exponents that are close. We find the
lowing laws:

t;t0.5760.12, ~11!
y
s

ly
ly
e

w.
n-

in

th

-

l-

l tr;t0.4960.09,

l;t0.4560.10.

Note that the prefactor forl tr is a factor of 3 smaller than the
prefactor forl, signifying an intricate movement of the vor
tices.

Indeed, one expectsl and t to have the same behavio
since the mean velocity of the vortex centers is constant
cording to Eq.~1!. For an explicit comparison, in Fig. 12 w
plot the ratiol/t and the velocityu of vortex centers mea
sured directly. Both quantities decrease slightly, howev
the velocity approximately, ast20.07 in the above time inter-
val.

In Fig. 13 we showsv
2 , calculated for the 34 vortices

tracked throughout the whole experimental time~they are

FIG. 10. Some trajectories of vortices~lines!, and passively ad-
vected particles~points, with approximately equal time spacing
The analysis uses five times the shown resolution!. Parts of particle
trajectories defined as a flight are shown with a gray line~trajecto-
ries to the upper left and lower right!.

FIG. 11. Time evolution of the mean free distancel, the mean
free distance measured by the length of the trajectories betw
mergingsl tr , and the collision timet. Straight lines:t0.49, t0.45,
and t0.57.
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allowed to undergo mergings!. A well-defined power law is
observed. For the time interval 1.2 s, t , 7 s, we find

sv
2;t1.360.1. ~12!

So the vortices move hyperdiffusively.

B. Discussion

The exponents observed can be understood in terms
simple geometrical argument. Estimatel as the distance
traveled by a vortex in unit time (;u, the invariant advec-
tion velocity!, divided by the probability of suffering a col
lision in this time interval (;u times the collisional cross
section times the density of vortices!. Then

l;
u

usr
;

1

ra
, ~13!

since the collisional cross section is proportional to the
dius for a system of circular disks. The collision timet is
simply

t;
l

u
;

1

rau
. ~14!

Inserting the algebraic laws for the time evolution ofa and
r, one arrives at

FIG. 12. Ratiol/t, and the vortex velocityu.

FIG. 13. The mean square displacement of the vorticessv
2 ,

calculated for 34 vortex trajectories. Straight line:t1.3.
f a

-

l;t;tjt2~1/4!j;t ~3/4!j. ~15!

With the obtained valuej50.7, we should havet;l
;t0.5, which is in agreement with the observed power la
~11!.

To further test Eq.~13!, in Fig. 14 we plot the produc
lNa, as given by the data. A clear plateau is observed
times 1.5 s,t,7 s, corresponding to the scaling regime
l.

On the whole, we conclude that expressions~13! and~14!
for l andt are confirmed by experiment. The power law f
sv

2 can be understood as follows: introduce a vortex dif
sion coefficientD by

sv
2[Dt. ~16!

EstimatingD as the mean free path squared divided by
collision time gives

D5lu. ~17!

Thus the growth in length scale causesD to grow as well.
Further, the mean square displacement of the vorticessv

2 is
now given by

s2;Dt;lut. ~18!

If D had been constant, one would have thatsv
2;t, that is,

Brownian motion of the vortices. But nowD increases with
time, and in turn the variance grows faster thant. Equation
~18! can be further tested directly, by plottingsv

2/(lut) ver-
sus time~see Fig. 14!. A plateau appears for times large
than 1.5 s, so Eq.~18! is well verified by experiment.

It is tempting to infer, from the above relations, a formu
betweenj and an exponent characterizing the temporal e
lution of the mean square displacement of the vortex cent
From Eqs.~13! and~18!, one may deduce that ifsv

2 grows as
tn, one must have the following relations betweenj andn:

n511 3
4 j. ~19!

By taking j50.7, one should find the mean square displa
ment of the vortices is characterized by an exponent equa
1.5. This is a bit larger than the observed exponent, whic
1.3; the reason is that systematic errors add so as to vio

FIG. 14. InvariantslNa andsv
2/lut* . Straight lines are shown

for comparison.



t
th
t,

e
a
ex

o
o
th
e

th
ce
tia
le
a

ng
iz
e
es
m
ed
, o
e
o

re
s

di
th

al

im
tio
bu

ient

m
the

s-
ted
ht

00
00
s,

e
a-
is

as

ac-
g.

ed
cter-
a-
le
ther
stri-

a
ng
2.
m

:

PRE 58 7269TWO-DIMENSIONAL TURBULENCE AND DISPERSION . . .
Eq. ~19!. The main factor is thatu is not exactly constant, bu
slightly decreases with time. In practice, one can say
relations~13! and ~18! are consistent with the experimen
and the corresponding straightforward relation~19! must be
taken as an approximate formula expressing the existenc
a link between the exponent characterizing the decay,
that characterizing the dispersion of the vortices in the
periment.

V. DISPERSION OF PASSIVE PARTICLES

In this section, we present studies of the dispersion
passive, imaginary particles, where the trajectories are
tained as described earlier in Sec. II D. To demonstrate
qualitative behavior of the particle motion, in Fig. 10 w
show some examples of particle trajectories. We note
trapping effects are not visible. Particles can enter vorti
during mergers, and, surely for some of the random ini
conditions, begin in the core of the vortices, but the partic
tend to be rapidly ejected, both during mergers and as
effect of the straining of vortices due to the surroundi
field. The observation that the vortex cores are character
by a low tracer density is in qualitative accordance with R
@12#. Here we want to make it clear that trapping in vortic
and sticking on their periphery are not effects that see
important for the particle dispersion; indeed, well-defin
trappings are too rare to justify a detailed analysis. Flights
parts of the trajectories with a velocity persistently high
than the mean velocity, are, on the other hand, often
served.

In Fig. 15 we show the mean of the absolute squa
displacements2 of the particles. A clear power law emerge
for times between 1 and 7 s. The detailed nature of the
persion can be appreciated in the inset, which shows
logarithmic derivative of the preceding points. For sm
times, the exponent decreases from 1.8, while, fromt
56 s, the exponent drops to 1. The small and large t
behavior is thus in accordance with the classical predic
@22#. However, the change in exponent is not smooth,

FIG. 15. The mean square displacement of 3200 passive, im
nary particles~circles! and a subset of 2208 particles not enteri
high-vorticity regions~line!. The latter curve has been divided by
The two curves are almost indistinguishable. Inset: the logarith
slope of the overall mean.
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shows a clear plateau, thus defining a dispersion coeffic
for intermediate times, with the values2;t1.39. As a mean
over three experiments, we find

s2;t1.460.1. ~20!

It is remarkable that this exponent is indistinguishable fro
that corresponding to the mean square displacement of
vortex centers.

Characterization in terms of flights

To trace the origin of the hyperdiffusion observed for pa
sive, imaginary particles, we have analyzed the compu
tracks for flight events, as described in Sec. II D. The flig
time distribution in Fig. 16 is a result of this procedure. 57
particle tracks have been analyzed, giving a total of 44
flight events. For flights longer than 1.5 and less than 6
the distribution follows a power law. For long flights, th
statistics will be influenced by the finite duration of the tr
jectories~recall that the total duration of the experiment
10.4 s); this explains the rapid decrease inP(t f) for t f
.6 s. We conclude that the distribution of flight times h
an algebraic tail, with a law given by

P~ t f !;t f
22.660.2. ~21!

We have investigated the temporal evolution of the char
teristics of this distribution; this is shown in the inset of Fi
16. The plot also shows the same analysis, but perform
over a smaller range of time, so as to see how the chara
istics of the distribution evolves with time. Although the st
tistics is on the border of being sufficient to draw reliab
conclusions, it seems that the tails stay parallel to each o
as time increases, which means that the slope of the di

gi-

ic

FIG. 16. Probability distribution of flight times. Straight line
t f

22.56. Inset: the same distribution~thick line!, along with the dis-
tribution of flights with extremum velocity occurring betweent*
52 –5 seconds~thin line!, andt* 55 –10 s~dotted line!.
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bution does not vary with time. It thus seems that the dis
bution are not sensitive to the fact that the system expan

We have also investigated in which regions of the flo
the particles move when they are subject to a flight. As de
onstrated in Fig. 17, flights predominantly occur for partic
located between opposite-sign vortices. This is not surp
ing, since the regions between two close opposite-sign
tices are characterized by large velocities, forming a jetl
structure. Thus there is a straightforward physical expla
tion for the occurrence of flights.

The exponents we find for the flight distribution are co
sistent with those for the variance. According to Ref.@16#,
we effectively haves2;t422.6;t1.4, in good agreement with
the previous result@Eq. ~20!#. This shows that we can regar
the hyperdiffusion for the passive particles as anomalo
that is caused by extreme~flight! events.

VI. DISCUSSION AND CONCLUSION

Let us first underline the good agreement between
experimental results obtained in Sec. III B and the theoret
predictions and previous numerical studies@3,4#. For the
geometrical quantities, the agreement is excellent, and
value ofj5 0.7 60.1 is close to the numerical estimates

For the dynamical quantities, the enstrophy and the k
tosis, the behavior is close to the prediction of the scal
theory, when including a diffusive decay of the extremu
vorticity @4#. Deviations are probably due to lack of resol
tion at early times in the experiment. In conclusion, our e
perimental results largely confirm the analysis of@3#.

We have further investigated new quantities, such as
collision time scale of the vortices and the vortex diffusi
coefficient, with good confirmation from measuremen
Thus we have successfully characterized the dynamical
havior of the vortices, which is shown to be hyperdiffusiv
The origin of this lies in the general scale dilation in t
algebraically decaying vortex system. The picture we p

FIG. 17. Vorticity field to t58.5 s. The positions of particle
undergoing a flight are marked with black squares.
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pose thus suggests that, as far as dispersion is conce
vortices essentially behave like particles of an ordinary tw
dimensional gas in an expanding geometry.

Incidently, the power laws governing the mean free p
l and the collision timet deserve a few comments. It ha
been proposed that a collision timet8 can be defined from
the equationdN/dt52N/2t8. t8 measures the mean tim
by which the population of vortices has decreased by
half. Defined in this way,t8 is proportional tot, whatever
the exponent at hand in the expression ofN(t). The collision
time t we measure increases with time at a slower rate.
t8 correspond to another kind of average, and it is not cl
whether it defines a quantity of dynamical relevance for
problem at hand.

The exponent we find for the collision time can be furth
applied to a few theoretical attempts; in Ref.@8#, it was pro-
posed thattcoll;tj, not in agreement with our measuremen
@Eq. ~11!#. In the context of 2D ballistic agglomeration o
hard spheres with a size-mass relation mimicking the ene
conservation rule for vortices@10#, a relation answering Eq
~13! holds in numerical simulations@23#. But, as a conse-
quence of a decreasing velocity of the aggregates, the c
sion time scale grows proportionally tot1, making the anal-
ogy difficult. One may also mention that a relation betwe
the decay parameterj and the vortex dispersion exponentn
was been proposed recently@24#. The expression isn52
2j/2. It turns out, however, that for the observed valuesj
50.7 andn51.3, this relation does not agree with the e
periment.

Having proposed that the vortices essentially diffuse in
expanding geometry, we have, with a seminumeri
method, examined the motion of passive particles in the s
tem. These move hyperdiffusively, and we have shown
presence of Levy flights, controlled by the jets formed by t
dipoles. We thus have a nonuniformity of the physical p
cesses at work: the particles linked to the highest vortic
levels undergo Brownian motion in a dilating geometr
while those visiting the background undergo stationary Le
flights. The fact that two different diffusion processes hold
the same system is conceivable on physical grounds.
highest vorticity levels are linked to structures of apprecia
spatial extent, affected by the collective action of seve
neighboring vortices, whereas individual particles are se
tive to the local flow produced by individual structures
pairs of structures. The remarkable fact is that, despite
different physical mechanisms at work, both processes
characterized by the same exponent 1.360.1. In freely de-
caying turbulence, the whole dispersion process seems t
characterized by a single exponent. We may finally under
the close relationship between the decay and the disper
problems, expressed by relation~19!; in a situation where
Levy flights control the dispersion process,n is expected to
range between 1 and 2, so that the domain of variation oj
extends between 0 and43 . This illustrates that the dispersio
processes may restrict the range of possible values foj.
Stated differently, the fact that the vortices cannot move
an arbitrary way induces constraints on the decay regim
turbulence. One may ask whether such constraints are st
enough to select a particular value ofj.
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